0=12x^2+12x-4

Simple and best practice solution for 0=12x^2+12x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=12x^2+12x-4 equation:


Simplifying
0 = 12x2 + 12x + -4

Reorder the terms:
0 = -4 + 12x + 12x2

Solving
0 = -4 + 12x + 12x2

Solving for variable 'x'.

Combine like terms: 0 + 4 = 4
4 + -12x + -12x2 = -4 + 12x + 12x2 + 4 + -12x + -12x2

Reorder the terms:
4 + -12x + -12x2 = -4 + 4 + 12x + -12x + 12x2 + -12x2

Combine like terms: -4 + 4 = 0
4 + -12x + -12x2 = 0 + 12x + -12x + 12x2 + -12x2
4 + -12x + -12x2 = 12x + -12x + 12x2 + -12x2

Combine like terms: 12x + -12x = 0
4 + -12x + -12x2 = 0 + 12x2 + -12x2
4 + -12x + -12x2 = 12x2 + -12x2

Combine like terms: 12x2 + -12x2 = 0
4 + -12x + -12x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(1 + -3x + -3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(1 + -3x + -3x2)' equal to zero and attempt to solve: Simplifying 1 + -3x + -3x2 = 0 Solving 1 + -3x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -0.3333333333 + x + x2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + x + 0.3333333333 + x2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + x + x2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + x + x2 = 0 + 0.3333333333 x + x2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 x + x2 = 0.3333333333 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. + 0.25 + x2 = 0.3333333333 + 0.25 Combine like terms: + 0.25 = 1.25 1.25 + x2 = 0.3333333333 + 0.25 Combine like terms: 0.3333333333 + 0.25 = 0.5833333333 1.25 + x2 = 0.5833333333 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 0.5833333333 Calculate the square root of the right side: 0.763762616 Break this problem into two subproblems by setting (x + 0.5) equal to 0.763762616 and -0.763762616.

Subproblem 1

x + 0.5 = 0.763762616 Simplifying x + 0.5 = 0.763762616 Reorder the terms: 0.5 + x = 0.763762616 Solving 0.5 + x = 0.763762616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 0.763762616 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 0.763762616 + -0.5 x = 0.763762616 + -0.5 Combine like terms: 0.763762616 + -0.5 = 0.263762616 x = 0.263762616 Simplifying x = 0.263762616

Subproblem 2

x + 0.5 = -0.763762616 Simplifying x + 0.5 = -0.763762616 Reorder the terms: 0.5 + x = -0.763762616 Solving 0.5 + x = -0.763762616 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -0.763762616 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -0.763762616 + -0.5 x = -0.763762616 + -0.5 Combine like terms: -0.763762616 + -0.5 = -1.263762616 x = -1.263762616 Simplifying x = -1.263762616

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.263762616, -1.263762616}

Solution

x = {0.263762616, -1.263762616}

See similar equations:

| 7.2(11.8n-9.3)+2.1=9.6n+9.4(1+3.2n) | | 3z+4z=6z+9 | | x+3+49=180 | | 9-3v=24 | | 7(4x+5)=147 | | 0=x^2-13x+24 | | 6x+x-6=6x+3 | | u^4-2u^2-63=0 | | 0=4x^3+6x^2-4x | | 8x+18y=12 | | 4-(6x+6)=(-2x+10) | | m^4-7m-8=0 | | 8v=136 | | -22x+60=8x+60 | | 36v^3-42v^2-6v+7=0 | | -8+7x=5x-2 | | 363-8382x(h-77)=w | | 5x+7-3x=4x+9 | | 46+13+x=90 | | 4w+3v= | | 24.2=w+6.2 | | 6v^2-1=0 | | y=1.25x-10 | | 0.06-0.01(x+1)-5=-0.01(2-x) | | 24.2=w | | ghgichckhhzr.ftkzhdnccfcfxtfhsifgcbxoyoyczi?$-%-@nb;b__-jhh?^?__Jhj_k_ | | 5+78x=39x+17 | | 4x-13=-45 | | 2y=20/3 | | 5.2y+y=31 | | -p^2+68p+1344=0 | | n+[n+2]+[n+4]=42 |

Equations solver categories